

TLP:

WHITE

FluBot analysis study

 FLUBOT ANALYSIS STUDY 2 TLP:WHITE

TLP:

WHITE

TLP:WHITE

May 2021

INCIBE-CERT_FLUBOT_ANALYSIS_STUDY_2021_v1.1

This publication belongs to INCIBE (National Cybersecurity Institute) and is licensed under a Creative Commons Attribution-Non-

commercial 3.0 Spain licence. Therefore, this work may be copied, distributed and publicly communicated under the following

conditions:

Å Acknowledgement. The content of this report can be reproduced in whole or in part by third parties, citing its origin and making

express reference to both INCIBE or INCIBE-CERT and its website: https://www.incibe.es/. Such acknowledgement may not in

any circumstances suggest that INCIBE provides support to said third party or supports the use made of its work.

Å Non-Commercial Use. The original material and derivative works may be distributed, copied and displayed as long as they

are not used for commercial purposes.

For any reuse or distribution, you must make this workôs licence terms clear to others. Any of the above conditions can be waived

if you get permission from INCIBE-CERT as the copyright holder. Full text of the licence: https://creativecommons.org/licenses/by-

nc-sa/3.0/es/.

https://www.incibe.es/
https://creativecommons.org/licenses/by-nc-sa/3.0/es/
https://creativecommons.org/licenses/by-nc-sa/3.0/es/

 FLUBOT ANALYSIS STUDY 3 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Contents
LIST OF FIGURES ... 3

LIST OF TABLES .. 4

1. About this study ... 5

2. Organisation of the document .. 6

3. Introduction .. 7

4. Technical report ... 8

4.1. General information .. 8

4.2. Summary of actions ... 8

4.3. Detailed analysis .. 9
4.4. Anti-detection and anti-reverse engineering techniques 20
4.5. Persistence .. 20

5. Conclusion .. 21

Appendix 1: Indicators of Compromise (IOC) .. 22

Appendix 2: Yara rules .. 25

LIST OF FIGURES

Illustration 1. View of the decompilation of one of the functions of application 1 9

Illustration 2. Static decryption of original code of application 1 .. 10

Illustration 3. Static decryption of original code of application 2 .. 10

Illustration 4. Static decryption of original code of application 3 .. 10

Illustration 5. Comparison of the class structure of the three applications after the decryption 11

Illustration 6. The result of a simple Google search to try to identify the family to which the malicious

code analysed belongs. .. 12

Illustration 7. A function that contains the encrypted character strings. ... 12

Illustration 8. An algorithm that decrypts character strings. ... 13

Illustration 9. Creation of the activity responsible for capturing the credit cardôs data 14

Illustration 10. Code responsible for blocking the notifications the user receives 14

Illustration 11. Code responsible for the RUN_USSD command ... 15

Illustration 12. Code responsible for accepting being the SMS application automatically through the

accessibility service .. 15

Illustration 13. Code responsible for obtaining the contact list ... 16

Illustration 14. Code responsible for sending SPAM SMS ... 16

Illustration 15. DGA initialisation algorithm ... 17

Illustration 16. DGA algorithm .. 17

Illustration 17. Code responsible for creating and sending requests to the C2 server 18

Illustration 18. An example of a request sent to one of the domains generated where the first Base64

string corresponds to the RSA encryption and the second to the XOR-encrypted command 19

Illustration 19. Applicationôs start window ... 19

Illustration 20. Obtaining REQUEST_IGNORE_BATTERY_OPTIMIZATIONS permissions........... 20

 FLUBOT ANALYSIS STUDY 4 TLP:WHITE

TLP:

WHITE

TLP:WHITE

LIST OF TABLES

Table 1. Details of sample 1 of malicious code. ... 8

Table 2. Details of sample 2 of malicious code. ... 8

Table 3. Details of sample 3 of malicious code. ... 8

Table 4. List of possible commands received by the C2 .. 13

Table 5. List of possible commands sent to the C2 ... 14

Table 6. RSA public key to encrypt the connection with the C2 in the three samples 18

Table 7. IOC rule generated with Madiant IOC Editor. .. 24

Table 8. Yara Rule. .. 25

 FLUBOT ANALYSIS STUDY 5 TLP:WHITE

TLP:

WHITE

TLP:WHITE

1. About this study

This study contains a detailed technical report prepared after analysing the samples found

in numerous campaigns detected that spoof messaging services, in order to identify the

family to which this malicious code belongs, and the actions it carries out, thus to be table

to collection the greatest possible quantity of information.

The actions carried out in preparing this report comprise the static and dynamic analysis of

the sample within a controlled environment. It should be highlighted that the samples

analysed had already been uploaded in advance to the VirusTotal platform, which publishes

them and makes them accessible to any analyst who has a page account on said platform.

This study is aimed in general at IT and cybersecurity professionals, researchers and

technical analysts interested in the analysis and investigation of this type of threats. It may

also be of special interests for users who use Android devices.

As regards the methodology followed, the reversing tasks were performed with Android

Studio (Emulator), JADX, dex2jar and BURP Suite.

 FLUBOT ANALYSIS STUDY 6 TLP:WHITE

TLP:

WHITE

TLP:WHITE

2. Organisation of the document

This document consists of a part 3.- Introduction in which FluBot, the malicious code subject

to this study, is identified, setting out its scope and the current status of the cyberattack

campaigns, as well as a brief explanation of their behaviour.

Section 4.- Technical report then sets out results of the dynamic and static analysis of the

FluBot samples that have been analysed, beginning with how to obtain the information that

contains the file that is going to be used, the capabilities of the malware and its actions, to

its anti-detection, anti-reverse-engineering and persistence techniques.

Finally, section 5.- Conclusion, sets out the most important aspects discussed over the

course of the study.

The document also has two appendices; Appendix 1: Indicators of Compromise (IOC) sets

out the indicator of compromise (IOC) and Appendix 2: Yara rules shows a Yara rule, both

for detecting samples related to this campaign.

 FLUBOT ANALYSIS STUDY 7 TLP:WHITE

TLP:

WHITE

TLP:WHITE

3. Introduction

Between the end of 2020 and the beginning of 2021 there were various fraudulent SMS

campaigns that give notification of a package spoofing different logistics companies, such

as FedEx, DHL or Correos and invite the recipient of the message to install an application

on their mobile device in order to discover where the package is.

After studying three different samples associated to these campaigns, the malicious code

was identified as FluBot. A name given to this Trojan for Android devices due to how quickly

it has spread, as if it were an influenza virus. The community also calls it as Fedex Banker

or Cabassous.

According to the investigations carried out by the Swiss company PRODAFT, it is estimated

that FluBot may have infected more than sixty thousand terminals and listed some eleven

million telephone numbers, a figure that represents 25% of the total Spanish

population.

As regards the functionality of the malicious code, once the user installs the application on

their device, it begins to track the identifiers of all the applications it starts and it is capable

of injecting superimposed pages when it detects a session log-in in one of the target

applications, such that the user thinks that they are entering the credentials on the original

website when, in reality, they are sending them to the command and control server (C2)

controlled by the malicious code operators.

 FLUBOT ANALYSIS STUDY 8 TLP:WHITE

TLP:

WHITE

TLP:WHITE

4. Technical report

The information obtained during the analysis of the samples is detailed below.

4.1. General information

The files analysed consist of files associated with applications in the Android mobile

operating system, as revealed by the Linux command file, both APK packages and Java

code (JAR), which is the programming language that was used to create them. At all events,

all of them are compressed packages in ZIP format.

fedex.apk: Zip archive data, at least v2.0 to extract

fedex2.apk: Java archive data (JAR)

fedex3.apk: Java archive data (JAR)

The signatures of the samples analysed are as follows:

Algorithm Hash

MD5 6d879ac01f7a26d62b38d9473626a328

SHA1 c6c1c23f2f2bb4a239f447a9a67f080bdfe3ccc2

SHA256 96912417e5bd643b71dccb527c93046f83c9c3325392bdc7dac8587a6b1e9c50

Table 1. Details of sample 1 of malicious code.

Algorithm Hash

MD5 4125019bb3370f1f659f448a5727357c

SHA1 dee560898a292406fc5a06126687b1e725b48a4e

SHA256 ffeb6ebeace647f8e6303beaee59d79083fdba274c78e4df74811c57c7774176

Table 2. Details of sample 2 of malicious code.

Algorithm Hash

MD5 7b4fd668a684e9bb6d09bcf2ebadfdd2

SHA1 0cf039f61e1c32f0f8e6ed0bad110dd2797df1ee

SHA256 9a5febfae55bae080acdb3f5f4a9ad2869fbd5d2c8b0af51fb34efc87d4093d8

Table 3. Details of sample 3 of malicious code.

4.2. Summary of actions

The malicious code can do the following:

Â Listen to notifications.

Â Read and write SMS messages.

Â Obtain the deviceôs contact list.

Â Make calls.

 FLUBOT ANALYSIS STUDY 9 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Â Injects system for application session log-in data theft.

Â Connection with C2 servers encrypted using RSA asymmetric cryptography.

4.3. Detailed analysis

After reviewing the decompilation of the applicationsô source code, it is observed that they

are obfuscated, since no readable code is observed, but rather values that appear

meaningless at first sight. Therefore, it can be intuited that the application is packaged and

that the real code is being hidden from the malicious code.

Illustration 1. View of the decompilation of one of the functions of application 1

On the other hand, the AndroidManifest file shows the permissions these applications

require:

android.permission.ACCESS_NETWORK_STATE

android.permission.ACCESS_NOTIFICATION_POLICY

android.permission.CALL_PHONE

android.permission.DISABLE_KEYGUARD

android.permission.EXPAND_STATUS_BAR

android.permission.FOREGROUND_SERVICE

android.permission.INTERNET

android.permission.NFC

android.permission.QUERY_ALL_PACKAGES

android.permission.READ_CONTACTS

android.permission.READ_PHONE_STATE

android.permission.READ_SMS

android.permission.READ_SYNC_SETTINGS

android.permission.READ_SYNC_STATS

android.permission.RECEIVE_SMS

android.permission.REQUEST_DELETE_PACKAGES

android.permission.REQUEST_IGNORE_BATTERY_OPTIMIZATIONS

android.permission.SEND_SMS

 FLUBOT ANALYSIS STUDY 10 TLP:WHITE

TLP:

WHITE

TLP:WHITE

android.permission.WAKE_LOCK

android.permission.WRITE_SMS

android.permission.WRITE_SYNC_SETTINGS

With these permissions, the application could perform the following actions:

Â Access to the internet.

Â Read and send SMS.

Â Read the phoneôs contact book.

Â Make phone calls.

Â Delete applications.

Â Access the ñAccessibilityò service.

The observed obfuscation is very common in malicious Android applications. Normally, it is

an application that hides an encrypted file, normally using RC4, which corresponds to the

original .dex extension file, which is decrypted in runtime and uploaded by the application.

The difficulty, from the point of view of the analysis, lies in locating the file and the decryption

key, which are normally calculated dynamically.

Application 1 is protected by APK Protector software and the file containing the original

code is located in the path assets/dex/classes-v1.bin.

Illustration 2. Static decryption of original code of application 1

In the case of applications 2 and 3, a different packer is used, but, like the previous one,

they are based on the same logic of storing an RC4-encrypted file in the paths

assets/Uwmt.json and assets/Yd.json.

Illustration 3. Static decryption of original code of application 2

Illustration 4. Static decryption of original code of application 3

 FLUBOT ANALYSIS STUDY 11 TLP:WHITE

TLP:

WHITE

TLP:WHITE

After decrypting these applicationsô resources, the original code is accessed. Comparing

that of the three application, it appears it is the same code, though with certain variations

such that the package identifier or the character strings peculiar to each sample, but the

analysis of one of them suffices to explain the behaviour of this Trojan family.

Illustration 5. Comparison of the class structure of the three applications after the decryption

The classes containing the main code, which, as can be seen, have quite descriptive

names, are found in packages with the identifiers com.tencent.mm and

com.example.myapplicationtest. These classes are as follows:

Bot

BotId

BrowserActivity

BuildConfig

CardActivity

ComposeSmsActivity

ContactItem

ContactListAdapter

DGA

ForegroundService

HeadlessSmsSendService

HttpCom

IntentStarter

LangTxt

MainActivity

MmsReceiver

MyAccessibilityService

MyNotificationListener

PanelReq

ProgConfig

R

SmsReceiver

SmsThreadActivity

SocksClient

Spammer

Utils

After a simple search, it was identified that the possible name given by this community to

this Trojan is FluBot.

 FLUBOT ANALYSIS STUDY 12 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Illustration 6. The result of a simple Google search to try to identify the family to which the malicious
code analysed belongs.

After reviewing the application code, the only obfuscation it appears to contain after

unpackaging it is to hide the character strings. To do this, it uses a public library called

paranoid belonging to the user MichaelRocks. The functioning of this library is relatively

simple. The encrypted character strings are stored inside it and, to obtain one of them, a

Long-type value is used which, after being passed to the function, returns the corresponding

string.

Illustration 7. A function that contains the encrypted character strings.

To be able to decipher the character strings, it suffices to replicate the algorithm used and

to indicate the various numbers in the source code.

 FLUBOT ANALYSIS STUDY 13 TLP:WHITE

TLP:

WHITE

TLP:WHITE

Illustration 8. An algorithm that decrypts character strings.

By decrypting certain character strings and analysing certain code blocks, the main

commands FluBot may receive from its C2 servers are extracted.

Command Description

BLOCK Block notifications

CARD_BLOCK Launch credit card phishing page

DISABLE_PLAY_PROTECT Disable Play Protect using the accessibility service

GET_CONTACTS Send the contacts list from the phonebook to the C2

NOTIF_INT_TOGGLE Enable notification interception

OPEN_URL Open a given URL using WebView

RELOAD_INJECTS Reload the list of injects

RETRY_INJECT
Re-inject an application from which credentials have

already been obtained

RUN_USSD Run the dialling of a USSD code

SEND_SMS Send SMS to a telephone number

SMS_INT_TOGGLE Enable SMS interception

SOCKS
Open a socket so the attacker can connect to the

network using a SOCKS proxy

UNINSTALL_APP
Uninstall the application indicated using the package

name

UPLOAD_SMS Exfiltrate the content of an SMS to the C2

Table 4. List of possible commands received by the C2

 FLUBOT ANALYSIS STUDY 14 TLP:WHITE

TLP:

WHITE

TLP:WHITE

These commands are received when the bot connects to the server by means of a request

with the ñPINGò command. The FluBot code can send the following commands to the C2

server:

Command Description

GET_INJECTS_LIST
It obtains the list of target applications to make

injections

GET_INJECT It obtains the HTML code corresponding to an injection

GET_SMS It gets the Phishing SMS to send to a victim

LOG
Response to the request for different commands

alongside the requested information

PING
Contact C2 to check whether it is necessary to execute

any command

PREPING Initial request to register the C2

SMS_RATE Obtain the delay time to send a mass SMS

Table 5. List of possible commands sent to the C2

Besides being able to perform injections into specific applications, FluBot contains code

that creates, on demand from the ñCARD_BLOCKò command, a window which requests the

userôs credit card data.

Illustration 9. Creation of the activity responsible for capturing the credit cardôs data

The notifications the device receives are blocked using the ñBLOCKò command.

Illustration 10. Code responsible for blocking the notifications the user receives

